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Abstract

The COVID-19 pandemic caused by SARS-CoV-2 has been a global
health challenge. Angiotensin-converting enzyme 2 (ACE2) is the host
receptor for SARS-CoV-2 entry. Recent studies have suggested that
patients with hypertension and diabetes treated with ACE inhibitors
(ACEIs) or angiotensin receptor blockers have a higher risk of COVID-
19 infection as these drugs could upregulate ACE2, motivating the
study of ACE2 modulation by drugs in current clinical use. Here, we
mined published datasets to determine the effects of hundreds of
clinically approved drugs on ACE2 expression. We find that ACEIs are
enriched for ACE2-upregulating drugs, while antineoplastic agents
are enriched for ACE2-downregulating drugs. Vorinostat and isotreti-
noin are the top ACE2 up/downregulators, respectively, in cell lines.
Dexamethasone, a corticosteroid used in treating severe acute respi-
ratory syndrome and COVID-19, significantly upregulates ACE2 both
in vitro and in vivo. Further top ACE2 regulators in vivo or in primary
cells include erlotinib and bleomycin in the lung and vancomycin,
cisplatin, and probenecid in the kidney. Our study provides leads for
future work studying ACE2 expression modulators.
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Introduction

The ongoing pandemic of coronavirus disease 2019 (COVID-19),

caused by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) virus, has plagued so far over 200 countries and has

resulted in over 11 million cases and 500,000 deaths since the start

of 2020. A key cellular receptor for SARS-CoV-2 entry in humans is

angiotensin-converting enzyme 2 (encoded by the gene ACE2)

(Brielle et al, 2020). A recent publication by Fang et al (2020)

suggested that patients with hypertension (HT) and diabetes melli-

tus may be at higher risk of having severe COVID-19 disease, as

these patients have been reported to express ACE2 at an increased

level. One mechanism is that HT patients are often treated with ACE

inhibitors (ACEIs) or angiotensin II type-I receptor blockers (ARBs),

which have been previously suggested to increase ACE2 expression

(Ferrario et al, 2005; Liang et al, 2015; Vuille-dit-Bille et al, 2015; Li

et al, 2017). In contrast to the hypothesis that ACEis or ARBs could

be deleterious, an early clinical study of hospitalized COVID-19

patients showed significantly lower mortality among patients taking

ACEis or ARBs (Zhang et al, 2020).

ACEIs and ARBs are widely used antihypertensive drugs acting

on the renin–angiotensin system, a hormone system comprising dif-

ferent variants of angiotensin peptides with important roles in regu-

lating vascular and kidney functions (Dimou et al, 2019). ACEIs

inhibit the ACE gene (but not the ACE2 gene) whose encoded

protein, ACE, converts angiotensin I to angiotensin II. ARBs

suppress the blood pressure-increasing effect of angiotensin II by

blocking its binding to its receptor (Dimou et al, 2019). Distinct

from ACE, ACE2 is responsible for the conversion of angiotensin I

and angiotensin II into other forms including angiotensin-(1–9) and

angiotensin-(1–7), which counteracts the effect of angiotensin II and

may paradoxically have protective effects on the lung and on the

cardiovascular system (Jiang et al, 2014; Paz Ocaranza et al, 2020).

The possibility that ACE2 expression may affect either susceptibility

to SARS-CoV-2 infection or severity of disease after infection has

raised the need to investigate the effects of a variety of prescribed

drugs on the modulation of ACE2 expression.

Addressing this challenge, we aimed to identify drugs whose

treatment can alter ACE2 expression and, assuming that the latter is
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an important determinant, possibly increase or decrease the infec-

tion risk of COVID-19. To this end, we analyzed the Connectivity

Map (CMAP) dataset that provides transcriptomic data of a collec-

tion of cell lines treated with approximately 20,000 small mole-

cules (Subramanian et al, 2017). Utilizing this resource, we mined

the ACE2 expression fold change (logFC) after each drug treatment,

to identify clinically approved drugs that result in strong upregula-

tion or downregulation of ACE2 expression in this data. We addi-

tionally mined the Gene Expression Omnibus (GEO) and the Gene

Tissue Expression Consortium resource (GTEx) datasets aiming to

identify which of the emerging in vitro findings may have further

in vivo support.

Results

We first focused on antihypertensive (anti-HT) drug treatment data

from the CMAP dataset to study the suggestion of Fang et al (2020)

that certain anti-HT drugs may affect ACE2 expression. Among the

available cell types from CMAP, we focused on carcinoma cell lines,

since they are of epithelial origin and may bear more resemblance

to airway epithelium, a major site of viral entry. We identified 48

clinically approved anti-HT drugs that were tested on the same four

carcinoma cell lines for up to 24 h in CMAP and computed the

ACE2 expression changes after their treatment averaged across the

cell lines (Materials and Methods; the cell lines are A549, MCF7,

PC3, and VCAP, selected because of the data available for a high

number of drugs tested on all these cells, see Appendix Note S1,

Appendix Fig S1 and Table EV1A for details).

Individually, no widely prescribed anti-HT drug was found to

increase ACE2 expression significantly in these experiments, but

methyldopa (an alpha-2 adrenergic receptor agonist) and molsido-

mine (a vasodilator) do significantly decrease ACE2 expression

(Fig 1A, logFC = �0.605 and �0.290, P = 0.002 and 0.005, respec-

tively; adjusted P = 0.11 for both; Table EV1B). When the individual

drug results are aggregated to identify the effects of major classes of

anti-HT drugs, we find that ACEIs, but not ARBs, tend to upregulate

ACE2 expression (Fig 1B, Gene set enrichment analysis (GSEA)

method P = 0.026, adjusted P < 0.1; Table EV1C). Anti-adrenergics

other than alpha/beta-blockers tend to downregulate ACE2 (Fig 1B,

GSEA P = 0.032, adjusted P < 0.1; Table EV1C). Notably, we find

that calcium channel blockers (CCBs) do not significantly change

ACE2 expression, consistent with the fact that they do not act on the

renin–angiotensin system. This finding provides preliminary in vitro

support for the suggestion of Fang et al (2020) that CCBs may be

considered as an alternative to ACEIs and is further supported by

results from a large study cohort where hypertensive patients

treated with CCBs (amlodipine and nifedipine) had no increase in

urinary ACE2 levels compared with untreated controls (Furuhashi

et al, 2015). A similar analysis for the 13 approved antidiabetic

drugs in the CMAP dataset that were tested on the same four carci-

noma cell lines did not identify any individual or class of drugs that

significantly altered ACE2 expression, partly due to the small

number of drugs in this class (Table EV1D and E).

We then turned to analyze a broad set of 672 clinically approved

drugs, each of which was tested on the same four carcinoma cell

lines as described above in the CMAP dataset, to identify the top

drugs that upregulate or downregulate ACE2 expression (full results

in Table EV1F). The top upregulators are vorinostat and panobinos-

tat, both of which are anticancer histone deacetylase (HDAC) inhibi-

tors (Fig 1C and D, logFC = 0.321 and 0.457, adjusted P = 2.77e�18

and 7.70e�3, respectively). They have previously been shown to

have antifibrotic effects and can reduce the risk of acute respiratory

deterioration (Lyu et al, 2019; Maher & Strek, 2019). The top ACE2

downregulator is isotretinoin, a vitamin A derivative with suspected

respiratory side effects (Gorpelioglu et al, 2010) (Fig 1C and D,

logFC = �0.478, adjusted P = 0.036). Notably, we identified six

clinically approved drugs in CMAP that are currently being investi-

gated in clinical trials (www.clinicaltrials.gov) for COVID-19

(chloroquine, thalidomide, methylprednisolone, losartan, lopinavir,

and ritonavir), none of which was found to alter ACE2 expression

significantly (P > 0.1, Table EV1F).

Analyzing the expression results of these 672 drugs in an aggre-

gated manner, we performed a GSEA based on the drug-induced

ACE2 expression fold changes and identified several classes of drugs

based on mechanism of action (MOA) that are significantly enriched

for up or downregulation of ACE2 expression, using the MOA anno-

tation from the Drug Repurposing Hub (Corsello et al, 2017)

(Fig 1E; Materials and Methods; full result in Table EV1G). Top

classes of ACE2-upregulating drugs are HDAC inhibitors (GSEA

P = 0.003, adjusted P = 0.02) and dopamine receptor antagonists

(GSEA P = 0.007, adjusted P = 0.02). We further extended this anal-

ysis to 989 clinically approved drugs tested on a total of 28 CMAP

cell lines. The 28 cell lines include 16 cancer and 12 normal cells

(this list is provided in Table EV2A with details including primary

site, subtype, and donor demographics), where each drug may have

been tested on a different subset of cells (Materials and Methods).

We examined the enrichment of ACE2-modulating drugs in the dif-

ferent WHO Anatomical Therapeutic Chemical (ATC) indication

categories (World Health Organization, 2006) (Fig 1F; Materials and

Methods; full results in Table EV2C, based on ACE differential

expression result in Table EV2B). We find that the class of drugs

targeting the renin–angiotensin system is enriched for upregulators

of ACE2 (GSEA P = 0.044), while antineoplastic agents, and in

particular protein kinase inhibitors, are enriched for downregulators

of ACE2 expression (GSEA P = 0.004), although these classes do not

achieve significance after FDR correction (Table EV2C). Specific

protein kinase inhibitors were also previously shown to inhibit

MERS-CoV and SARS-CoV in vitro (Dyall et al, 2014).

The analyses described above were performed by aggregating the

drug-induced expression changes across cell types (Materials and

Methods). We next analyzed CMAP data of additional relevant cell

types separately by their tissue of origin to investigate potential

tissue-specific effects. We focused on the lung, kidney, liver, central

nervous system (CNS), and intestine (Materials and Methods),

which represent tissues that can be affected by SARS-CoV-2 (Zaim

et al, 2020). For each of these tissues, we were only able to find one

(or two, for lung) cell type where a reasonable number (> 100) of

clinically approved drugs have been tested at the 24-h time point

(details in Table EV2D). The cells identified from kidney, liver, and

CNS were non-cancerous or primary cells (HA1E, PHH, and NPC

cells, respectively), which could be more relevant for our investiga-

tion than the cancer cell lines from CMAP. As expected, the drug-

induced ACE2 expression changes exhibit mostly weak correlations

across cells from different tissue types, with Spearman’s correlation

coefficients between the log fold changes of pairs of cells ranging

2 of 9 Molecular Systems Biology 16: e9628 | 2020 ª 2020 The Authors

Molecular Systems Biology Sanju Sinha et al

http://www.clinicaltrials.gov


A B

C D

E F

Figure 1.

ª 2020 The Authors Molecular Systems Biology 16: e9628 | 2020 3 of 9

Sanju Sinha et al Molecular Systems Biology



from �0.07 to 0.2 (Fig EV1A; Table EV2E). Nevertheless, we

observed a consistent but insignificant trend that ACEIs tend to

upregulate ACE2 expression across the three normal cell types from

kidney, liver, and CNS (Fig EV1B). Concordant with the findings

above from the four carcinoma cell lines in CMAP, antineoplastic

agents as a group were found to be enriched for drugs downregulat-

ing ACE2 in the normal NPC cells from CNS (GSEA adjusted

P = 0.01, Fig EV1C, Table EV2F).

Additionally, we also analyzed CMAP drug treatment data

beyond the 24-h time point used above. We identified 14 clinically

approved drugs with such data available, which were tested on

either the 293T or VCAP cell lines for 48 h (details and results in

Table EV2G). In these data, vemurafenib, fluphenazine, and afatinib

were found to significantly upregulate ACE2 expression (adjusted

P < 0.1), and imatinib significantly downregulated ACE2 (adjusted

P = 0.001). Treatment data at the 6- and 24-h time points in the

same cell line were available for vemurafenib and fluphenazine; for

both drugs, we observed a trend of time-dependent increase in the

level of ACE2 upregulation (Fig EV2), suggesting that these drugs

may modulate ACE2 expression during prolonged treatment.

To extend our analysis beyond the CMAP dataset, we mined the

GEO database for gene expression data of drug treatments with

matched controls in lung and kidney tissue or cells (Materials and

Methods). We collected a total of 74 relevant lung datasets involving

42 unique clinically approved drugs, among which 27 datasets (cov-

ering 21 drugs) were composed of non-cancerous samples including

primary bronchial epithelial cells and in vivo samples from human

and rodents (Table EV3A). Similarly, for kidney, 35 datasets for 29

drugs (including 23 drugs in 28 non-cancer datasets involving

in vivo samples) were identified (Table EV3B). The drug-induced

ACE2 differential expression results (Materials and Methods) for the

lung and kidney datasets are summarized in Fig 2A and C, respec-

tively. The top significant drugs identified from the more relevant

non-cancer datasets are visualized in Fig 2B and D. For lung, the

most significant drug is dexamethasone, which upregulates ACE2 in

datasets of both normal and Pneumocystis-infected mice lung tissue

(logFC = 0.97 and 0.36, adjusted P = 0.001 and 0.027, respectively,

Fig 2B). Dexamethasone also increased ACE2 expression in our

analysis of four carcinoma cell lines from the CMAP dataset

(logFC = 0.18, P = 0.006, Table EV1F). Notwithstanding, one

should note that recent studies have reported that dexamethasone

treatment of hospitalized COVID-19 patients has beneficial effects,

but this might be due to its immune-modulatory actions (preprint:

Horby et al, 2020). Another top identified drug is the epidermal

growth factor receptor (EGFR) inhibitor erlotinib, which is found to

upregulate ACE2 in a dataset of human primary bronchial epithelial

cells (logFC = 1.04, adjusted P = 2.95E-5, Fig 2B), a relevant cell

type suggested to interact with the SARS-CoV-2 virus (Mason,

2020). In the CMAP analysis, we observed a non-significant trend of

ACE2 upregulation at 24 h by erlotinib (logFC = 0.05, adjusted

P > 0.1, Table EV1F). Interestingly, erlotinib has been reported to

inhibit the endocytosis and intracellular trafficking of multiple

viruses including hepatitis C, dengue, and Ebola, exerting

broad-spectrum antiviral effects (Bekerman et al, 2017). The

chemotherapeutic drug bleomycin is a significant ACE2 downregula-

tor identified in a dataset of rat lung tissue (logFC = �0.17, adjusted

P = 0.003, Fig 2B), in accordance with an earlier report that

bleomycin decreases ACE2 protein level in alveolar epithelial cells

(Uhal & Abdul-Hafez, 2010).

Among the most significant candidates in the kidney cell anal-

ysis (summarized in Fig 2C), we again focused on non-cancer

datasets and observed that the chemotherapy drug cisplatin upreg-

ulated ACE2 in mice kidney samples, while it downregulated

ACE2 in the renal cortex of rat (logFC = 0.29 and �1.16, adjusted

P = 8.06E�3 and 2.36E�5, respectively, Fig 2D), suggesting a cell

type and possibly species-specific effect. Vancomycin, another top

identified drug, is a glycopeptide antibiotic that increases ACE2

expression in mice kidney samples from two independent datasets

(logFC = 0.89 and 0.93, adjusted P = 0.04 for both). Glycopeptide

antibiotics and its derivatives have been previously shown to

block MERS and SARS cell entry (Zhou et al, 2016). Probenecid,

a drug for treating gout, was found to decrease ACE2 expression

in a renal cortical cell line (logFC = �0.61, adjusted P = 0.001,

Fig 2D); this drug has been proposed to be repurposed for anti-

influenza therapy (Perwitasari et al, 2013). Other significant drugs

arising from the analysis of cancer datasets of lung and kidney

from GEO are shown in Fig EV3 with additional information in

Appendix Note S2.

Finally, we mined gene expression in normal human lung

tissue from the GTEx dataset to extend our in vitro findings

◀ Figure 1. The landscape of ACE2 expression levels alterations in response to drug treatments across cell lines in CMAP (Subramanian et al, 2017).

A–F Differential expression analysis for ACE2 expression changes in treated vs control samples was performed with the level 3 CMAP data of 24-h response values using
limma (Ritchie et al, 2015; Materials and Methods). Volcano plots showing the log fold change (x-axis) and uncorrected negative log10P value (y-axis) of ACE2
expression changes are given for (A) 48 antihypertensive drugs and (C) 672 clinically approved drugs that are each tested on four carcinoma cell lines from CMAP
(Subramanian et al, 2017). The ACE2 expression levels in control and drug-treated groups for the top significant drugs (vorinostat, panobinostat, and isotretinoin)
among the 672 clinically approved drugs are shown with box plots in (D), the ACE2 expression log fold change values and adjusted P values from limma, and the
number of samples per group are labeled for each drug. In the box plot of panel (D), the center line, box edges, and whiskers denote the median, interquartile
range, and the rest of the distribution in respective order, except for points that were determined to be outliers using a method that is a function of the
interquartile range, as in standard box plots. The enrichment of positive/negative ACE2 expression regulators in different drug classes based on their mechanism of
action (MOA) was tested with the GSEA method as implemented in the R package fgsea (preprint: Korotkevich et al, 2019; Materials and Methods), and the
enrichment significance (negative log10P values) is shown in bar plots in (B) and (E), for the analysis on the 48 antihypertensive drugs and the 672 clinically
approved drugs, respectively. We further extended the analysis to a larger set of 989 clinically approved drugs tested on a total of 28 cell lines (16 cancer and 12
normal cells; this list is provided in Table EV2A with details including primary site, subtype and donor demographics) where each drug may have been tested on a
different subset of cells (Materials and Methods) and performed enrichment analysis using the WHO ATC drug classification data (World Health Organization,
2006), and top enriched drug classes are shown in (F). The horizontal and the vertical dashed lines denote a P value of 0.05. Drug indication and ATC classification
annotations are obtained from the DrugBank database (Wishart et al, 2018). All P values are computed from differential expression analysis using limma (Ritchie
et al, 2015) (Materials and Methods). ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II type-I receptor blockers; CCBs, calcium channel blockers;
ERAs, endothelin receptor antagonists; TKR, tyrosine kinase receptor.
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(Lonsdale et al, 2013). To this end, we identified genes whose

expression is positively or negatively associated with ACE2 expres-

sion, and then examined whether targets of certain classes of drugs

are enriched among those genes. This analysis is based on the

notion that the effect of drug treatment, which usually acts on the

protein level, is functionally similar to the effect of downregulating

the drug target expression on the mRNA level. Consistent with our

earlier findings in CMAP, we find that the targets of ACEIs are

enriched for genes negatively associated with ACE2 expression in

normal human lung tissue (Fisher’s test adjusted P = 8.58E�4,

Materials and Methods), while the targets of antineoplastic drugs

are enriched for genes positively correlated with ACE2 expression

(adjusted P = 2.24E�4). Additionally, the latter association for

antineoplastic drug targets is also observed in a single-cell RNA-

seq dataset of normal lung tissue (adjusted P = 7E�3) (Vieira

Braga et al, 2019).

Discussion

To date, solid evidence concerning whether ACE2 expression can

alter the risk of COVID-19 infection is lacking. The role of ACEIs/

ARBs in modulating the clinical course of viral pneumonia and

COVID-19 infection is also under debate (Diaz, 2020; Esler & Esler,

2020; Gurwitz, 2020; Zhang et al, 2020; Zheng et al, 2020). If ACE2

expression does influence either susceptibility or disease course, it

is important to chart the landscape of how commonly used thera-

peutic drugs affect ACE2 expression. Addressing this challenge, we

performed a systematic in vitro analysis of the CMAP cell line data

that shows that ACEIs, although not most other antihypertensives,

are enriched for upregulators of ACE2 expression (Fig 1B). Extend-

ing the scope of our analyses, we identified additional clinically

approved drugs and drug categories that affect ACE2 expression

in vitro (Fig 1C–E). Analyzing the additional but limited amount of

CMAP data for cells from different tissue types and for drug treat-

ment for longer durations up to 48 h, we find that the drug-induced

ACE2 changes can be tissue-specific and time-dependent (Figs EV1

and EV2), and for some drugs, their effect on ACE2 can become

stronger upon prolonged treatment (Fig EV2). We successfully

corroborated some of the drugs’ effects identified in CMAP, mining

in vitro and in vivo gene expression data of the lung and kidney

from the GEO database. The analysis of GEO data from primary or

immortalized cells also resulted in additional candidate ACE2 regu-

lators, including a corticosteroid (dexamethasone), antineoplastic

drugs (erlotinib, bleomycin and cisplatin tested in non-cancerous

samples), an antibiotic (vancomycin), and an uricosuric agent

(probenecid) to be further investigated in experimental studies

assessing their effects on ACE2 expression, which may be relevant

to SARS-CoV-2 infection and pathogenesis.

Materials and Methods

The CMAP data

The level 3 data of the Connectivity Map (CMAP) dataset

(Subramanian et al, 2017) were downloaded from the GEO database

(GSE92742 and GSE70138). We used the DrugBank database

(Wishart et al, 2018) to identify all drugs that are clinically

approved in the United States, Canada, or the EU and then matched

the drugs to the compounds in CMAP by drug generic names. Start-

ing from this subset of CMAP data for only the clinically approved

drugs, we first aimed to choose a reasonably large set of drugs such

that each of the drugs in the set were tested on the same set of cell

types (also at the same concentration and duration of treatment) for

consistency. Due to incomplete data in CMAP, there exists a trade-

off between the number of cell types and the number of drugs to

include (Appendix Note S1 and Fig S1). Balancing this trade-off, we

selected a set of 672 clinically approved drugs, each of which had

been tested on the same four carcinoma cell lines (A549, MCF7,

PC3, and VCAP, Table EV1; the epithelium-derived carcinoma cell

may also better resemble the airway epithelial cells relevant for

COVID-19 as explained in the main text) for 24 h at a concentration

of 10 lM. The chosen time point and concentration represent the

most frequent treatment condition present in the dataset. This

subset of 672 approved drugs includes 48 antihypertensive and 13

antidiabetic drugs, which we used for the first part of our analysis.

In the later parts of our analyses, (i) trading biological homogeneity

for higher coverage, we included drugs that each can be tested on a

different number and types of cells, resulting in 989 clinically

approved drugs tested on a total of 28 cell types, which we used for

the analysis of enrichment of drug classes by WHO ATC indications;

(ii) we filtered CMAP data separately for each tissue type that can

be affected by COVID-19, including lung, kidney, liver, central

nervous system, and intestine; for each of these tissues, only one

(two for lung) cell type was found with data for treatment by > 100

approved drugs (details in Table EV1), and we used these data

subsets for the analysis of tissue type-specific ACE2 response to

drugs; (iii) we selected CMAP data with drug treatment for 48 h,

resulting in 14 approved drugs each tested on either 293T or VCAP

◀ Figure 2. Drug-induced ACE2 differential expression in lung and kidney-derived cells or tissue types from the GEO database.

A–D This fig summarizes the differential expression analysis results for ACE2 upon treatment by clinically approved drugs in samples of lung and kidney datasets mined
from the GEO database, spanning both cancer and non-cancer datasets (Materials and Methods). Volcano plots showing the log fold change (x-axis) and
uncorrected negative log10P value (y-axis) of ACE2 expression changes are displayed in (A) for 74 datasets of cells or tissue samples from lung, involving 42
clinically approved drugs, and in (C) for 35 kidney datasets involving 29 clinically approved drugs. Among these, we focused on the top significant drugs that
modulate ACE2 expression in non-cancerous cells or tissue samples from lung and kidney, which are shown in (B) and (D), respectively, where the ACE2 expression
(y-axis) difference between control and treated groups (x-axis) are shown with box plots. In the title of each box plot, the GEO identifier of the respective studies
and the corresponding drug name and the sample type are provided. Different datasets involving experiments using the same drug were analyzed and presented
separately, since the sample types can be different across datasets. All the P values are computed from differential expression analysis using limma (Ritchie et al,
2015) (Materials and Methods). In the box plots of panels (B) and (D), the center line, box edges, and whiskers denote the median, interquartile range, and the rest
of the distribution in the respective order, except for points that were determined to be outliers using a method that is a function of the interquartile range, as in
standard box plots. HBEC, human primary bronchial epithelial cells.
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cell line, and we used this subset of data to investigate the time

dependency of drug-induced ACE2 changes.

Identification of ACE2 modulators from the CMAP dataset

Using each of the subsets of CMAP data as described above, we

selected the expression data of only the “landmark” and “BING”

(best-inferred) genes for the population controls and the drug-

treated samples. The landmark/BING genes and population controls

are previously described in the CMAP publication (Subramanian

et al, 2017); ACE2 is not a landmark gene but is a best-inferred

gene. For each drug, differential expression (DE) analysis of drug-

treated samples vs population controls was performed using limma

(Ritchie et al, 2015) taking advantage of the data across all land-

mark/BING genes, and finally, the DE results for ACE2 were

selected. In cases where each drug was tested on more than one cell

type, for example in the first part of our analysis where all drugs

were tested on the same four carcinoma cell lines (described above),

cell type was included as a covariate in the limma linear model

(Ritchie et al, 2015), i.e., the results represent averaged DE across

the cell types.

Analysis of drug classes enrichment in ACE2 modulators

With the drug-induced ACE2 differential expression results across

the selected clinically approved drugs as described above, we tested

for the enrichment of different classes of drugs for positive/negative

ACE2 modulators with the GSEA method as implemented in the R

package fgsea (preprint: Korotkevich et al, 2019). Specifically, the

drug-induced ACE2 expression log fold change values were ranked,

and the GSEA method was applied to the ranked list with “gene

sets” for GSEA being the sets of drugs of each class. The drug

classes were based on mechanisms of action (MOA) and indication

in our two respective analysis described in the main text, where the

MOA annotation was obtained from the Drug Repurposing Hub

(Corsello et al, 2017), and for drug indication, we used the WHO

ATC classification (World Health Organization, 2006) obtained from

the DrugBank database (Wishart et al, 2018).

Identification of ACE2 modulators using the GEO database

We systematically mined the GEO database for gene expression data

of drug treatment with matched controls in lung and kidney cells/

tissues combining programmatic search and manual curation.

Specifically, we downloaded an SQL database of GEO metadata

(timestamp: May 10, 2020) using the R package GEOmetadb (Zhu

et al, 2008) and used an in-house script (see Data availability) to

query the metadata for GEO datasets and data series whose

summary, description, or study design information contain the

generic names of any of the clinically approved drugs (identified

from DrugBank, as described above). We then further filtered the

resulting datasets to find keywords such as “lung/pneumo”, “bron-

chial/bronchus”, “kidney/renal/nephr”, and “treat” (see our script

for details; Data availability) to obtain a smaller set of several

hundreds of candidate GEO studies. These were then manually

selected for relevant studies with drug-treated and control expres-

sion profiling. We were careful to exclude studies that compare drug

responses in two groups differed by genotype at a single locus, such

as between a wild-type cell line and an isogenic mutant cell line. For

each selected relevant study, the gene expression and phenotypic

data were downloaded from GEO, the control group and the treated

group(s) were manually labeled, and differential expression analysis

between treated and control groups was performed with limma

(Ritchie et al, 2015). If a single GEO study contains experiments of

treatment by different drugs, the analysis was then performed indi-

vidually for each drug. Similarly, for cases where the same drug

was tested on different sample types in a study (e.g., a cancer cell

line and a normal cell), each cell line was analyzed separately. In

cases where multiple time points of drug treatment are available,

the drug treatment time was controlled for as a covariate in the

limma linear model. Details on those finally selected studies are

given in Table EV3A and B.

Co-expression analysis of drug targets and ACE2 expression

We computed the association between the expression of ACE2 and

each gene in the GTEx human lung tissue (Lonsdale et al, 2013) and

mapped the genes to clinically approved drugs that target (i.e.,

inhibit) them using drug target annotation from DrugBank (Wishart

et al, 2018). We then identified the two sets of drugs that target only

genes with significant positive or negative correlations with ACE2,

respectively (i.e., drugs targeting multiple genes with mixed direc-

tions of correlation with ACE2 are excluded). The enrichment of these

two sets of drugs in the WHO ATC classes of drug indication (World

Health Organization, 2006) was analyzed using Fisher’s test. Simi-

larly, we computed the correlation of each gene with ACE2 expres-

sion in a single-cell RNA-seq dataset comprising 10,360 cells from

upper and lower airways and lung parenchyma in healthy lungs

(GSE130148) (Vieira Braga et al, 2019) and mapped each gene to the

corresponding targeting drugs. For this list, we performed GSEA

(preprint: Korotkevich et al, 2019) to test for enrichment in the WHO

ATC classes of drug indication (World Health Organization, 2006).

P values in this study were adjusted with the Benjamini–Hoch-

berg method.

Data availability

All the data analyzed in this study are from published studies or

publicly accessible datasets. The CMAP data were downloaded from

the GEO database (GSE92742 [http://www.ncbi.nlm.nih.gov/ge

o/query/acc.cgi?acc=GSE92742] and GSE70138 [http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138]). The identifiers of

the other GEO datasets we curated and analyzed (those containing

drug treatment data of lung and kidney-derived cell or tissue

samples) can be found in Table EV3. The code used for the analysis

can be obtained from https://github.com/ruppinlab/ACE2_modulat

ing_drugs.

Expanded View for this article is available online.
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